Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Nano Lett ; 24(15): 4672-4681, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587873

RESUMO

The bifunctional oxygen electrocatalyst is the Achilles' heel of achieving robust reversible Zn-air batteries (ZABs). Herein, durable bifunctional oxygen electrocatalysis in alkaline media is realized on atomic Fe-N4-C sites reinforced by NixCo3-xO4 (NixCo3-xO4@Fe1/NC). Compared with that of pristine Fe1/NC, the stability of the oxygen evolution reaction (OER) is increased 10 times and the oxygen reduction reaction (ORR) performance is also improved. The steric hindrance alters the valence electron at the Fe-N4-C sites, resulting in a shorter Fe-N bond and enhanced stability of the Fe-N4-C sites. The corresponding solid-state ZABs exhibit an ultralong lifespan (>460 h at 5 mA cm-2) and high rate performance (from 2 to 50 mA cm-2). Furthermore, the structural evolution of NixCo3-xO4@Fe1/NC before and after the OER and ORR as well as charge-discharge cycling is explored. This work develops an efficient strategy for improving bifunctional oxygen electrocatalysis and possibly other processes.

2.
Medicine (Baltimore) ; 103(14): e37632, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579088

RESUMO

Donor safety is crucial for living donor liver transplantation (LDLT), and sufficient liver regeneration significantly affects outcomes of living donors. This study aimed to investigate clinical factors associated with liver regeneration in living donors. The study retrospectively reviewed 380 living donors who underwent liver donation at Chang Gung Memorial Hospital in Linkou. The clinical characteristics and medical parameters of donors were analyzed and compared according to liver donation graft type. There were 355 donors (93.4%) with right hemi-liver donations and 25 donors (6.6%) with left hemi-liver donations. Left hemi-liver donors had a higher body mass index (BMI) and a larger ratio of remnant liver volume (RLV) to total liver volume (TLV). However, the 2 groups showed no significant difference in the liver regeneration ratio. The type of remnant liver (P < .001), RLV/body weight (P = .027), RLV/TLV (P < .001), serum albumin on postoperative day 7 and total bilirubin levels on postoperative day 30 were the most significant factors affecting liver regeneration in living donors. In conclusion, adequate liver regeneration is essential for donor outcome after liver donation. The remnant liver could eventually regenerate to an adequate volume similar to the initial TLV before liver donation. However, the remnant left hemi-liver had a faster growth rate than the remnant right hemi-liver in donors.


Assuntos
Regeneração Hepática , Transplante de Fígado , Humanos , Doadores Vivos , Hepatectomia , Estudos Retrospectivos , Fígado/cirurgia , Hepatomegalia
3.
Front Immunol ; 15: 1368516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601146

RESUMO

Background: Differences in border zone contribute to different outcomes post-infarction, such as left ventricular aneurysm (LVA) and myocardial infarction (MI). LVA usually forms within 24 h of the onset of MI and may cause heart rupture; however, LVA surgery is best performed 3 months after MI. Few studies have investigated the LVA model, the differences in border zones between LVA and MI, and the mechanism in the border zone. Methods: The LVA, MI, and SHAM mouse models were used. Echocardiography, Masson's trichrome staining, and immunofluorescence staining were performed, and RNA sequencing of the border zone was conducted. The adipocyte-conditioned medium-treated hypoxic macrophage cell line and LVA and MI mouse models were employed to determine the effects of the hub gene, adiponectin (ADPN), on macrophages. Quantitative polymerase chain reaction (qPCR), Western blot analysis, transmission electron microscopy, and chromatin immunoprecipitation (ChIP) assays were conducted to elucidate the mechanism in the border zone. Human subepicardial adipose tissue and blood samples were collected to validate the effects of ADPN. Results: A novel, simple, consistent, and low-cost LVA mouse model was constructed. LVA caused a greater reduction in contractile functions than MI owing to reduced wall thickness and edema in the border zone. ADPN impeded cardiac edema and promoted lymphangiogenesis by increasing macrophage infiltration post-infarction. Adipocyte-derived ADPN promoted M2 polarization and sustained mitochondrial quality via the ADPN/AdipoR2/HMGB1 axis. Mechanistically, ADPN impeded macrophage HMGB1 inflammation and decreased interleukin-6 (IL6) and HMGB1 secretion. The secretion of IL6 and HMGB1 increased ADPN expression via STAT3 and the co-transcription factor, YAP, in adipocytes. Based on ChIP and Dual-Glo luciferase experiments, STAT3 promoted ADPN transcription by binding to its promoter in adipocytes. In vivo, ADPN promoted lymphangiogenesis and decreased myocardial injury after MI. These phenotypes were rescued by macrophage depletion or HMGB1 knockdown in macrophages. Supplying adipocytes overexpressing STAT3 decreased collagen disposition, increased lymphangiogenesis, and impaired myocardial injury. However, these effects were rescued after HMGB1 knockdown in macrophages. Overall, the IL6/ADPN/HMGB1 axis was validated using human subepicardial tissue and blood samples. This axis could serve as an independent factor in overweight MI patients who need coronary artery bypass grafting (CABG) treatment. Conclusion: The IL6/ADPN/HMGB1 loop between adipocytes and macrophages in the border zone contributes to different clinical outcomes post-infarction. Thus, targeting the IL6/ADPN/HMGB1 loop may be a novel therapeutic approach for cardiac lymphatic regulation and reduction of cell senescence post-infarction.


Assuntos
Proteína HMGB1 , Infarto do Miocárdio , Camundongos , Animais , Humanos , Interleucina-6/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Retroalimentação , Infarto do Miocárdio/metabolismo , Macrófagos/metabolismo , Adipócitos/metabolismo
4.
Heliyon ; 10(5): e27086, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486751

RESUMO

Aims: Previous studies have demonstrated a significant upregulation of Integrin Beta 1 (ITGB1) in Telocytes. This study aims to explore the roles and underlying mechanisms of ITGB1 in inflammation and oxidative stress following Lipo-polysaccharide (LPS) administration in Telocytes. Methods: We observed an increase in reactive oxygen species (ROS) production, accompanied by a reduction in ITGB1 levels post-LPS treatment. Results: Notably, inhibiting ROS synthesis markedly reduced LPS-induced ITGB1 expression. Additionally, ectopic ITGB1 expression mitigated LPS-induced inflammation and oxidative stress, evident through decreased levels of pro-inflammatory markers such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin (IL)-1ß, IL-6, and Monocyte Chemoattractant Protein (MCP)-1. Depletion of endothelial Yes-Associated Protein 1 (YAP1) notably diminished the levels of inflammatory markers and ROS production. Furthermore, exosomes secreted by ITGB1-modified Telocytes promoted Human Umbilical Vein Endothelial Cells (HUVECs) proliferation and inhibited apoptosis. In vivo experiments revealed that exosomes from ITGB1-modified Telocytes modulated functional and structural changes, as well as inflammatory responses in Acute Lung Injury (ALI). Conclusion: These findings highlight the critical role of the YAP1/ROS axis in LPS-induced Telocyte injuries, underlining the therapeutic potential of targeting ITGB1 for mitigating inflammation and oxidative stress in these cells.

5.
Food Sci Nutr ; 12(3): 2122-2130, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455207

RESUMO

The association of dietary inflammatory index (DII) with constipation has not been well studied in general population. Therefore, the aim of this cross-sectional study was to investigate whether DII is associated with constipation in a large representative sample of the US population. Data were obtained from the 2005-2010 National Health and Nutrition Examination Survey (NHANES). A total of 12,308 participants aged ≥20 years were included in the analysis. DII was calculated based on a single 24-h dietary recall, and constipation was defined as having fewer than three bowel movements per week by the questionnaire on bowel health. Logistic regression analysis demonstrated a significant positive association between DII score and constipation, with each unit increase in DII score associated with a 20% increase in constipation risk (95% CI: 1.13-1.28). Subgroup analysis revealed high odds ratios (ORs) among individuals classified as "Other Race" (OR: 1.42, 95% CI: 1.12-1.80) and "Non-Hispanic White" (OR: 1.31, 95% CI: 1.12-1.54). In addition, RCS analysis indicated a nonlinear relationship between DII and constipation among individuals with a BMI less than 25 (OR: 1.17, 95% CI: 1.07-1.28), while the overall trend remained positive correlation (OR: 1.20, 95% CI: 1.10-1.31). Briefly, our study suggests that there may be a link between DII and constipation, which has implications for the development of dietary interventions aimed at preventing and managing constipation. However, this association was complex and variable depending on individual factors such as BMI and racial background and needed to establish longitudinal studies to confirm the underlying mechanisms between DII and constipation.

6.
ACS Nano ; 18(13): 9678-9687, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38522087

RESUMO

The unsatisfactory adsorption and activation of CO2 suppress electrochemical reduction over a wide potential window. Herein, the built-in electric field (BIEF) at the CeO2/In2O3 n-n heterostructure realizes the C1 (CO and HCOO-) selectivity over 90.0% in a broad range of potentials from -0.7 to -1.1 V with a maximum value of 98.7 ± 0.3% at -0.8 V. In addition, the C1 current density (-1.1 V) of the CeO2/In2O3 heterostructure with a BIEF is about 2.0- and 3.2-fold that of In2O3 and a physically mixed sample, respectively. The experimental and theoretical calculation results indicate that the introduction of CeO2 triggered the charge redistribution and formed the BIEF at the interfaces, which enhanced the interfacial adsorption and activation of CO2 at low overpotentials. Furthermore, the promoting effect was also extended to CeO2/In2S3. This work gives a deep understanding of BIEF engineering for highly efficient CO2 electroreduction over a wide potential window.

7.
Environ Pollut ; 348: 123820, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527583

RESUMO

Microplastics (MPs) and nanoplastics (NPs) have been suspected as contaminants in various foodstuffs, including salts, all over the world. Regarding the different sizes and polymer types, the mass concentrations of actual plastic particles in salt are not very clear. The purpose of this study is to develop a scalable method for qualitative and quantitative analysis of MPs and NPs by using Pyrolysis Gas Chromatography Quadrupole-Time of Flight mass spectrometry (Py-GC/QTOFMS) to detect their mass concentrations in salt samples. The targeted and suspected lists of polymers in salts were compiled based on the combined results of the high-resolution mass spectrometry (HRMS) full scanning with auxiliary MS dataset and the laser direct infrared (LDIR) chemical imaging analysis. The seven targeted MPs with polymer standards, i.e., polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polycarbonate (PC), were first subjected to a full MS scanning mode of the Py-GC/QTOFMS analysis. Subsequently, the parental masses of their pyrolysis compounds were used as the seeds to generate the related daughter masses. This process established both retention time and mass-pairs matching for the target MS/MS mode for enabling the identification and quantification of the particles. The suspected MPs with a matching degree >0.65 in the LDIR list were explored either by the full scan MS. Only PVC was identified, and PET was suspected. The Py-GC/QTOFMS result is complementary and comparable to the LDIR detection with the matching degree >0.85. We identified that PVC and PET (suspected) can be measured in both commercial and bulk sea salts, and their concentrations in sea salts are much higher than in rock salts, implying heavy contamination of the seawater.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/análise , Microplásticos , Sais , Pirólise , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas/métodos , Polímeros/química , Poluentes Químicos da Água/análise
8.
J Environ Manage ; 355: 120503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457894

RESUMO

The global concern regarding the adverse effects of heavy metal pollution in soil has grown significantly. Accurate prediction of heavy metal content in soil is crucial for environmental protection. This study proposes an inversion analysis method for heavy metals (As, Cd, Cr, Cu, Ni, Pb) in soil based on hyperspectral and machine learning algorithms for 21 soil reference materials from multiple provinces in China. On this basis, an integrated learning model called Stacked RF (the base model is XGBoost, LightGBM, CatBoost, and the meta-model is RF) was established to perform soil heavy metal inversion. Specifically, three popular algorithms were initially employed to preprocess the spectral data, then Random Forest (RF) was used to select the best feature bands to reduce the impact of noise, finally Stacking and four basic machine learning algorithms were used to establish comparisons and analysis of inversion model. Compared with traditional machine learning methods, the stacking model showcases enhanced stability and superior accuracy. Research results indicate that machine learning algorithms, especially ensemble learning models, have better inversion effects on heavy metals in soil. Overall, the MF-RF-Stacking model performed best in the inversion of the six heavy metals. The research results will provide a new perspective on the ensemble learning model method for soil heavy metal content inversion using data of hyperspectral characteristic bands collected from soil reference materials.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Metais Pesados/análise , China , Aprendizado de Máquina
9.
PeerJ Comput Sci ; 10: e1830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435620

RESUMO

Object detection based on deep learning has made great progress in the past decade and has been widely used in various fields of daily life. Model lightweighting is the core of deploying target detection models on mobile or edge devices. Lightweight models have fewer parameters and lower computational costs, but are often accompanied by lower detection accuracy. Based on YOLOv5s, this article proposes an improved lightweight target detection model, which can achieve higher detection accuracy with smaller parameters. Firstly, utilizing the lightweight feature of the Ghost module, we integrated it into the C3 structure and replaced some of the C3 modules after the upsample layer on the neck network, thereby reducing the number of model parameters and expediting the model's inference process. Secondly, the coordinate attention (CA) mechanism was added to the neck to enhance the model's ability to pay attention to relevant information and improved detection accuracy. Finally, a more efficient Simplified Spatial Pyramid Pooling-Fast (SimSPPF) module was designed to enhance the stability of the model and shorten the training time of the model. In order to verify the effectiveness of the improved model, experiments were conducted using three datasets with different features. Experimental results show that the number of parameters of our model is significantly reduced by 28% compared with the original model, and mean average precision (mAP) is increased by 3.1%, 1.1% and 1.8% respectively. The model also performs better in terms of accuracy compared to existing lightweight state-of-the-art models. On three datasets with different features, mAP of the proposed model achieved 87.2%, 77.8% and 92.3%, which is better than YOLOv7tiny (81.4%, 77.7%, 90.3%), YOLOv8n (84.7%, 77.7%, 90.6%) and other advanced models. When achieving the decreased number of parameters, the improved model can successfully increase mAP, providing great reference for deploying the model on mobile or edge devices.

10.
Hepatol Res ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451566

RESUMO

AIM: We aimed to investigate the prognostic factors for salvage liver transplant in patients with early hepatocellular carcinoma recurrence after hepatectomy. METHODS: This retrospective analysis included 53 patients who underwent salvage living-donor liver transplantation between January 2007 and January 2018. There were 24 and 29 patients in the early (recurrence ≤24 months after primary liver resection) and the late recurrence groups, respectively. RESULTS: In the multivariate Cox regression model, pre-liver transplant downstaging therapy, early recurrence (ER) after primary liver resection , and recurrence-to-liver-transplant ≥12 months were independent risks to predict recurrent hepatocellular carcinoma recurrence after salvage living-donor liver transplantation. Compared with the late recurrence group, the ER group showed lower disease-free survival rates (p < 0.001); however, the overall survival rates did not differ between the two groups (p = 0.355). The 1-, 3-, and 5-year disease-free survival rates were 83.3%, 70.6%, and 66.2%, and 96.0%, 91.6%, and 91.6% in the early and late recurrence groups, respectively. When stratified by recurrence-to-liver transplant time and pre-liver transplant downstaging therapy in the ER group, disease-free survival and overall survival rates were significantly different. CONCLUSION: ER after primary liver resection with advanced tumor status and a longer period of recurrence-to-liver-transplant (≥12 months) have a negative impact on salvage liver transplant. Our findings provide novel recommendations for treatment strategies and eligibility for salvage liver transplant candidates.

11.
Environ Sci Technol ; 58(8): 3812-3822, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358300

RESUMO

Fog harvesting is considered a promising freshwater collection strategy for overcoming water scarcity, because of its environmental friendliness and strong sustainability. Typically, fogging occurs briefly at night and in the early morning in most arid and semiarid regions. However, studies on water collection from short-term fog are scarce. Herein, we developed a patterned surface with highly hydrophilic interconnected microchannels on a superhydrophobic surface to improve droplet convergence driven by the Young-Laplace pressure difference. With a rationally designed surface structure, the optimized water collection rate from mild fog could reach up to 67.31 g m-2 h-1 (6.731 mg cm-2 h-1) in 6 h; this value was over 130% higher than that observed on the pristine surface. The patterned surface with interconnected microchannels significantly shortened the startup time, which was counted from the fog contact to the first droplet falling from the fog-harvesting surface. The patterned surface was also facilely prepared via a controllable strategy combining laser ablation and chemical vapor deposition. The results obtained in outdoor environments indicate that the rationally designed surface has the potential for short-term fog harvesting. This work can be considered as a meaningful attempt to address the practical issues encountered in fog-harvesting research.


Assuntos
Água Doce , Água , Gases , Pressão , Tempo (Meteorologia) , Interações Hidrofóbicas e Hidrofílicas
12.
Medicine (Baltimore) ; 103(8): e37299, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394490

RESUMO

The aim of this study was to estimate the association between blood urea nitrogen (BUN) and clinical prognosis in patients with COVID-19. A multicenter, retrospective study was conducted in adult patients with COVID-19 in 3 hospitals in Zhenjiang from January 2023 to May 2023. Patients were divided into survival and death group based on whether they survived at day 28. The demographic, comorbidities, and laboratory data were independently collected and analyzed, as well as clinical outcomes. Total 141 patients were enrolled and 23 (16.3%) died within 28 days. Patients who died within 28 days had a higher level of BUN compared with survivors. Bivariate logistic regression analysis showed that BUN was a risk factor for 28-day mortality in patients with COVID-19. ROC curve showed that BUN could predict 28-day mortality of COVID-19 patients (AUC = 0.796, 95%CI: 0.654-0.938, P < .001). When the cutoff value of BUN was 7.37 mmol/L, the sensitivity and specificity were 84.62% and 70.31%. Subgroup analysis demonstrated that hyper-BUN (≥7.37 mmol/L) was associated with increased 28-day mortality among COVID-19 patients. Patients with COVID-19 who died within 28 days had a higher level of BUN, and hyper-BUN (≥7.37 mmol/L) was associated with increased 28-day mortality.


Assuntos
COVID-19 , Adulto , Humanos , Nitrogênio da Ureia Sanguínea , Estudos Retrospectivos , Prognóstico , Fatores de Risco , Curva ROC
13.
Nat Commun ; 15(1): 1295, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346953

RESUMO

Two-dimensional (2D) superlattices, formed by stacking sublattices of 2D materials, have emerged as a powerful platform for tailoring and enhancing material properties beyond their intrinsic characteristics. However, conventional synthesis methods are limited to pristine 2D material sublattices, posing a significant practical challenge when it comes to stacking chemically modified sublattices. Here we report a chemical synthesis method that overcomes this challenge by creating a unique 2D graphene superlattice, stacking graphene sublattices with monodisperse, nanometer-sized, square-shaped pores and strategically doped elements at the pore edges. The resulting graphene superlattice exhibits remarkable correlations between quantum phases at both the electron and phonon levels, leading to diverse functionalities, such as electromagnetic shielding, energy harvesting, optoelectronics, and thermoelectrics. Overall, our findings not only provide chemical design principles for synthesizing and understanding functional 2D superlattices but also expand their enhanced functionality and extensive application potential compared to their pristine counterparts.

14.
Heliyon ; 10(4): e26078, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384578

RESUMO

Continuous planting is unavoidable in agricultural production, but continuous planting affects plant growth and physiological characteristics. In this study, we analyzed rhizosphere soil nutrients, physiological characteristics, hormone metabolome changes and their interactions of Casuarina equisetifolia (C. equisetifolia) with the increase of continuous planting number. The results found that C. equisetifolia root was significantly inhibited, the plant height was dwarfed and the biomass was significantly reduced as continuous planting number increased. Secondly, continuous planting caused a decrease in the rhizosphere soil nutrient transformation capacity, and a significant decrease in the total soil nutrient and available nutrient content. Analysis of physiological indexes showed that continuous planting resulted in a decrease in nitrogen, phosphorus, and potassium content, a decrease in the activity of physiological indexes of resistance, and a decrease in photosynthetic capacity of C. equisetifolia leaves. Hormone metabolome analysis showed that continuous planting critically affected the accumulation of five characteristic hormones in C. equisetifolia leaves, in which salicylic acid 2-O-ß-glucoside (SAG), 2-oxindole-3-acetic acid (OxIAA), trans-zeatin-O-glucoside (tZOG) and gibberellin A3 (GA3) content decreased significantly while abscisic acid (ABA) content increased significantly. In conclusion, continuous planting lowered the rhizosphere soil nutrient transformation capacity of C. equisetifolia, lowered the soil available nutrient content, inhibited their root growth, and hindered the nutrient uptake and transportation by the root, thus led to the decrease of the nutrient accumulation capacity in the leaves of C. equisetifolia, and the decrease of SAG, OxIAA, and tZOG, GA3 synthesis ability decreased, ABA accumulated in large quantities, C. equisetifolia resistance and photosynthesis ability decreased, and their growth was impeded. This study provides insights for the effective management of continuous planting in the cultivation of C. equisetifolia.

15.
Asian J Surg ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38395709

RESUMO

BACKGROUND: Retinoblastoma (RB) is a rare primary malignant tumor primarily affecting children. Our study aims to compare the overall survival (OS) between pediatric and adult RB patients and establish a predictive model for adult RB patients' OS to assist clinical decision-making. METHODS: This study retrospectively analyzed data from 1938 RB patients in the Surveillance, Epidemiology, and End Results (SEER) database, covering the period from 2000 to 2015. Propensity score matching (PSM) ensured balanced characteristics between pediatric and adult groups. A Cox proportional hazards regression model was used to assess prognostic factors, and selected variables were utilized to construct a predictive survival model. The Nomogram model's performance was evaluated through the C-index, time-dependent ROC curves, calibration curves, and decision curve analysis (DCA). RESULTS: Following PSM, adult RB patients had lower OS compared to pediatric RB patients. Independent prognostic factors for adult RB OS included age, gender, disease stage, radiation therapy, income, and diagnosis confirmation. In the training cohort, the Nomogram achieved a C-index for OS of 0.686 and accurately predicted 2-year, 3-year, and 5-year OS with AUC values of 0.672, 0.680, and 0.660, respectively. The C-index, time-dependent ROC curves, calibration curves, and DCA in both training and validation cohorts confirmed the Nomogram's excellent performance. CONCLUSION: In this study, adult RB patients have worse OS than pediatric RB patients. Consequently, we constructed a Nomogram to predict the risk for adult RB patients. The Nomogram demonstrated good accuracy and reliability, making it suitable for widespread application in clinical practice to assist healthcare professionals in assessing patients' prognoses.

16.
Cell Signal ; 115: 111036, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38185229

RESUMO

BACKGROUND: Previous research has demonstrated that glycyrrhizic acid (GA) exhibits antioxidant, anti-inflammatory, and antiapoptotic characteristics. Using myocardial ischemia/reperfusion injury as a case study, this study aims to clarify the functional significance of GA and to elucidate the mechanisms involved. MATERIALS AND METHODS: In this study, an MI/R injury model was established both in vivo and in vitro to investigate the impact of GA on MI/R injury. The viability of H9c2 cells was evaluated using the Cell Counting Kit-8. Myocardial damage was assessed through the measurement of creatine kinase myocardial band (CK-MB) levels and lactate dehydrogenase (LDH), HE staining, and MASSON staining. Inflammatory cytokine levels (IL-6, IL-1ß, IL-10, and TNF-α) were measured to determine the presence of inflammation. Cellular oxidative stress was evaluated by measuring ROS and MMP levels, while cardiac function was assessed using cardiac color Doppler ultrasound. Immunofluorescence staining to determine the nuclear translocation of YAP, TUNEL to determine apoptosis, and western blotting to determine gene expression. RESULTS: GA treatment effectively alleviated myocardial injury induced by MI/R, as evidenced by reduced levels of inflammatory cytokines (IL-1ß, IL-6, IL-10, and TNF-α) and cardiac biomarkers (CK-MB, LDH) in MI/R rats. Moreover, There was a significant increase in cell viability in vitro after GA treatment and inhibited reactive oxygen species (ROS) during oxidative stress, while also increasing mitochondrial membrane potential (MMP) in vitro. The Western blot findings indicate that GA treatment effectively suppressed apoptosis in both in vivo and in vitro settings. Additionally, GA demonstrated inhibitory effects on the activation of the Hippo/YAP signaling pathway triggered by MI/R and facilitated YAP nuclear translocation both in vitro and in vivo. It has been found, however, in vitro, that silencing the YAP gene negates GA's protective effect against hypoxia/reoxygenation-induced myocardial injury. CONCLUSION: This study suggests that GA regulates YAP nuclear translocation by inhibiting the Hippo/YAP signaling pathway, which protects ists against MI/R injury. This finding may present a novel therapeutic approach for the treatment of MI/R.


Assuntos
Ácido Glicirrízico , Interleucina-10 , Ratos , Animais , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Ácido Glicirrízico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Interleucina-10/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Apoptose , Estresse Oxidativo , Via de Sinalização Hippo , Miócitos Cardíacos/metabolismo
17.
Int J Biol Macromol ; 260(Pt 2): 129527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246435

RESUMO

Oxidative stress-induced enteric neuropathy is an important factor in slow transit constipation (STC). Cistanche deserticola crude polysaccharides (CDCP) are natural antioxidants with various biological activities. We prepared CDCP through water-extract and alcohol-precipitation methods. The structural characteristics of CDCP were analyzed by infrared spectroscopy and methylation analysis. The results showed that CDCP was primarily composed of (1 â†’ 4)-linked glucans with minor amounts of pectic polysaccharides. Different doses of CDCP (100, 200, and 400 mg/kg) were administered to loperamide-induced STC mice to explore the therapeutic effects of CDCP. Compared with the untreated group, CDCP treatment significantly improved constipation symptoms, relevant gut-regulating peptides levels, colonic pathological damage, and colonic myenteric nerons injury. CDCP enhanced the antioxidant capacity by decreasing Malondialdehyde (MDA) content, increasing Superoxide Dismutase (SOD) activity and Reduced Glutathione (GSH) content. CDCP significantly reduced oxidative stress-induced injury by preserving mitochondrial function in the colonic myenteric plexus. Furthermore, the neuroprotective effects of CDCP might be associated with the Nrf2/Keap1 pathway. Thus, our findings first revealed the potential of CDCP to protect the colonic myenteric plexus against oxidative stress-induced damage in STC, establishing CDCP as promising candidates for natural medicine in the clinical management of STC.


Assuntos
Cistanche , Fármacos Neuroprotetores , Camundongos , Animais , Cistanche/química , Fármacos Neuroprotetores/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química
18.
J Hazard Mater ; 466: 133556, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262314

RESUMO

Metal contamination from mine waste is a widespread threat to soil health. Understanding of the effects of toxic metals from mine waste on the spatial patterning of rhizosphere enzymes and the rhizosphere microbiome remains elusive. Using zymography and high-throughput sequencing, we conducted a mesocosm experiment with mine-contaminated soil, to compare the effects of different concentrations of toxic metals on exoenzyme kinetics, microbial communities, and maize growth. The negative effects of toxic metals exerted their effects largely on enzymatic hotspots in the rhizosphere zone, affecting both resistance and the area of hotspots. This study thus revealed the key importance of such hotspots in overall changes in soil enzymatic activity under metal toxicity. Statistical and functional guild analysis suggested that these enzymatic changes and associated microbial community changes were involved in the inhibition of maize growth. Keystone species of bacteria displayed negative correlations with toxic metals and positive correlations with the activity of enzymatic hotspots, suggesting a potential role. This study contributes to an emerging paradigm, that changes both in the activity of soil enzymes and soil biota - whether due to substrate addition or in this case toxicity - are largely confined to enzymatic hotspot areas.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Solo/química , Bactérias/genética , Metais/análise , Rizosfera , Microbiologia do Solo , Poluentes do Solo/análise , Metais Pesados/análise
19.
Int J Cardiol ; 400: 131800, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244891

RESUMO

The main characteristics of the myocardial ischemia/reperfusion injury (MI/RI) are oxidative stress, apoptosis, and an inflammatory response. Aucubin (AU) is an iridoid glycoside that possesses various biological properties and has been discovered to demonstrate antioxidant and anti-inflammatory impacts in pathological processes, such as ischemia-reperfusion. The objective of this research was to investigate if AU treatment could mitigate myocardial inflammation and apoptosis caused by ischemia/reperfusion (I/R) in both laboratory and animal models, and to elucidate its underlying mechanism. By ligating the coronary artery on the left anterior descending side, a successful MI/RI rat model was created. Additionally, H9C2 cells were subjected to hypoxia/reoxygenation (H/R) in order to imitate the injury caused by ischemia/reperfusion (I/R). Furthermore, various concentrations of AU were administered to H9C2 cells or rats before H/R stimulation or myocardial I/R surgery, respectively. In vitro, the assessment was conducted on cardiac function, inflammatory markers, and myocardial pathology. In vivo, we examined the viability of cells, as well as factors related to apoptosis and oxidative stress. Furthermore, the presence of proteins belonging to the STAT3/NF-κB/HMGB1 signaling pathway was observed both in vivo and in vitro. AU effectively improved cardiomyocyte injury caused by H/R and myocardial injury caused by I/R. Furthermore, AU suppressed the production of reactive oxygen species and inflammatory molecules (TNF-alpha, IL-1ß, and IL-6) and proteins associated with cell death (caspase-3 and Bax), while enhancing the levels of anti-inflammatory agents (IL-10) and the anti-apoptotic protein Bcl-2.AU mechanistically affected the phosphorylation of STAT3 at the Ser727 site and Tyr705 following H/R by modulating the signaling pathway involving signal transducer and activator of transcription 3 (STAT3)/nuclear factor-κB (NF-κB)/high mobility group box 1 (HMGB1), while also suppressing the nuclear translocation of NF-κB p65 and HMGB1 exonucleation. In conclusion, the use of AU treatment might offer protection against myocardial infarction and injury by reducing oxidative stress, suppressing apoptosis, and mitigating inflammation. The regulation of the STAT3/NF-κB/HMGB-1 pathway may contribute to this phenomenon by affecting STAT3 phosphorylation and controlling NF-κB and HMGB-1 translocation. Contributes to identifying possible objectives for myocardial ischemia/reperfusion damage.


Assuntos
Proteína HMGB1 , Glucosídeos Iridoides , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Ratos , Animais , NF-kappa B/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína HMGB1/metabolismo , Fator de Transcrição STAT3 , Apoptose , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...